Newsletter Signup
Stay informed with the
NEW Casino City Times newsletter! Recent Articles
Best of Frank Scoblete
|
Gaming Guru
Can the 5-count actually make craps a positive game for players?17 December 2009
Skinny writes for my website and here is a brilliant piece which can be found at http://www.goldentouchcraps.com/skinny0001.shtml. It analyzes mathematician Dr. Don Catlin's massive study of using the 5-Count. Its results might just surprise you. Take it away Skinny: "[According to Dr. Don Catlin's study] the 5-Count selected the skilled shooter 10.7% more often than it selected the random shooter." I have been agreeing with the statement about the 5-count that it does not alter the odds in favor of the player. It extends one's time at the table because one bets on fewer shooters by eliminating 57% of the [random rolls] with the 5-count. But the house advantage, after the 5-count is completed, is the same on each and every shooter as it was before the 5-count was completed. Since one is betting on fewer shooters, this in turn helps the player to save some of his bankroll so he can stay at the table longer before hitting his loss limit. In addition to giving the player more playing time with the same bankroll, it also gives the player more comp time which will translate into additional dollars earned in terms of comps. This money also counts towards earnings for the player. I remember reading a study performed by Dr. Catlin concerning the house advantage and the 5-count. As I recall, he analyzed the house advantage [on the placement of the 6 and 8] for those who completed the 5-count. The results of the study showed the house advantage to be 1.4% on both populations. We know there are players who have passed the SmartCraps tests and are able to determine they have a positive edge at the game of craps. Through the skill they have developed we know for a fact they are able to alter the odds of the game so that they are playing with an advantage against the house when they shoot. By being able to reduce the appearance of the DEVIL 7 to a degree that can not be attributed to random fluctuation we know they have altered the odds of the game. The house does not have an advantage over these players when they shoot. In the long run these controlled shooters, if they are able to keep their skill at the same level, will have an advantage over the houseā¦. By extending one's time at the table with the same bankroll through the 5-count, the player has more time at the table to find a . . . controlled shooter. In fact we know, "The 5-count selected the skilled shooter 10.7% more often than it selected the random shooter." So doesn't this mean the 5-Count WILL alter the odds of the game in favor of the player? We know from SmartCraps, we have players who can alter the odds of the game in their favor. If we only bet on these players we will have altered the odds of the game in our favor. "The 5-Count selected the skilled shooter 10.7% more often than it selected the random shooter." Therefore, does not the 5-count alter the odds of the game in favor of the player who uses it? Will not a player who strictly uses the 5-count and makes bets with a low house advantage be able to have a more favorable win/loss percentage than that dictated by the house advantage in the long run? In other words, isn't it possible to alter the house edge against a player by following the Golden Touch Craps advice on betting? Therefore the 5-count is helping you to select players who are exerting an influence on the dice. This leads me to the conclusion that the 5-count does indeed alter the odds of the game in favor of the player even though it does not change the house advantage on any of the bets. Convoluted? Perhaps. But I think you need to go further into [Catlin's] article [go to http://goldentouchcraps.com/proof.shtml] into the 2nd experiment to understand what I am saying. The issue is, in the first experiment, Dr. Catlin is looking at purely random rolls. Naturally the 5-count player wages less than the bet-all player and therefore loses less per all shooters at the table because he bets on [fewer rolls]. Furthermore the house advantage is the same for both players for the amount of money they waged individually. Note, Dr. Catlin's statement, "In fact, the loss for both players is approximately 1.5% of the total amount wagered, which is about what we would expect considering the 6 and 8 come in with a 1.5% edge for the house." He also states, "We would not expect the 5-count to show a positive expectation against strictly random rollers; after all, no betting system can change a negative into a positive." However, it is his 2nd proposition that interests me and goes to the crux of my argument. In the 2nd experiment he answers the question, "Can the 5-Count Find Controlled Shooters?" One only needs to look at part of the description of that 2nd simulation which I will quote here. The second proposition that the Captain stated was that the 5-Count was the best way to limit losses while waiting for the conscious or unconscious rhythmic roller or controlled shooter to appear. That it acted as a sort of "range finder" and that once it homed in on a controlled shooter, you could make craps a positive expectation. Catlin did a simulation designed to find out whether the 5-count could actually do this. He simulated 10 players (Player #1 through Player #10) with Player #1 being the player whose statistics are reported. The program assumed that Player #1 was a random shooter who uses the 5-count on others when he plays. Catlin has Player #1 always betting on himself right from the come-out, but for players #2 through #10 he waits for the 5-count to finish and then he bets on the come or pass (whichever is available at that point) and takes double odds. As in the first simulation above, the odds are always working. The twist in this simulation is that Player #10 is a controlled shooter having an SRR [Seven-to-Rolls-Ratio] of 1 to 7. Random SRR is 1 to 6. Catlin ran 10,000,000 rounds (which is over 100,000,000 games) and got the following results: Player #1 had an edge of 0.18% over the house. Player #1 bet on Player #10 5,632,885 times and on Player #9 5,084,975 times. The 5-Count selected the skilled shooter 10.7% more often than it selected the random shooter. While this did not prove that the 5-count will, in general, reduce the house edge [in this simulation the 5-counter needed a shooter with a SRR of 1 to 7 to flip it over], the simulation clearly shows that if there is a skilled shooter at the table the 5-count will select him with a higher frequency than the rest of the players and will thereby reduce the house edge or, as in this case, give the player the edge. The simulation produced wins of $527,947.80 for Player #1 from total wagers of $292,716,290. The 5-count does indeed alter the odds of the game in favor of the player even though it does not change the house advantage on any of the bets. This article is provided by the Frank Scoblete Network. Melissa A. Kaplan is the network's managing editor. If you would like to use this article on your website, please contact Casino City Press, the exclusive web syndication outlet for the Frank Scoblete Network. To contact Frank, please e-mail him at fscobe@optonline.net. Recent Articles
Best of Frank Scoblete
Frank Scoblete |
Frank Scoblete |