Newsletter Signup
Stay informed with the
NEW Casino City Times newsletter! Related Links
Recent Articles
Best of Alan Krigman
|
Gaming Guru
Being Easier to Win Doesn't Always Make a Bet more Advantageous2 August 2006
It's usually true. Here's an example. The chance of winning a "straight-up" bet on a number at single-zero roulette is one out of 37, 2.70 percent. The probability of winning the same proposition in a double-zero game is one out of 38, 2.63 percent. Payoffs are 35-to-1 either way. The single-zero wager is more likely to win, 2.70 versus 2.63 percent. And the probability increment is more than matched where it counts. Player expectation is to lose $2.70 per $100 at risk on the single-zero bet as opposed to $5.26 on the double. As another illustration, consider betting $10 at craps, either on the four
or the five. A win on the four pays $18 and has a chance of one out of three
or 33.33 percent. Success on the five pays $14 has a probability of two out
of five or 40.00 percent. So a shot at the five is easier to win, 40.00 versus
33.33 percent. And, despite its lower payoff, the five also yields less of an
expected average loss: $4.00 as opposed to $6.67 per $100 bet. One reason for the reversal is that an imbalance in payoffs might make a tougher bet statistically more advantageous. For instance, the chance of winning on a hard four at craps is one out of nine or 11.11 percent; the payoff is 7-to-1. The probability of winning on a hard six is one out of 11 or 9.09 percent; the payoff is 9-to-1. The four is easier to win, 11.11 versus 9.09 percent. However, expected loss per $100 bet works oppositely. It's $9.09 on the hard six; it's worse -- $11.11 -- on the four. Pushes are a second, more subtle, reason why a better chance of winning may be less advantageous than the alternative. The pesky 12 versus two-up at blackjack illustrates this phenomenon. The hand is an underdog no matter how it's executed. Basic Strategy is to hit, but not everybody is comfortable doing so. And the flip-flop between chances of winning and expectation may partly account for solid citizens daring to doubt the dogma. A player who stands on 12 will win if the dealer busts and will lose otherwise.
No pushes are possible. The chances are 35.36 percent of winning and the remaining
64.64 percent of losing. For every $100 up for grabs when this hand occurs,
players expect to win $35.36 and lose $64.64. The net effect is an average loss
of $64.64 - $35.36 or $29.28 per $100 bet. Per $100 bet, this averages $34.84 in wins, $60.18 in losses, and $4.97 in pushes. The net is $60.18 - 34.84 or a $25.34 whack. Players will win more often on 12 versus two by standing than hitting, 35.36 versus 34.84 percent. But, pushes when players stand erode the probability of a loss more than that of a win, so the expected penalty associated with the hand is less with a hit, $25.34 in contrast with $29.28 per $100 on the layout. And Basic Strategy is predicated on expected gains or losses on a hand, not on the chances of triumph or tragedy. Which goes to prove the prescience of the poet, Sumner A Ingmark, when he penned: How you view the circumstances, Related Links
Recent Articles
Best of Alan Krigman
Alan Krigman |
Alan Krigman |